Keloid-derived keratinocytes acquire a fibroblast-like appearance and an enhanced invasive capacity in a hypoxic microenvironment in vitro

نویسندگان

  • XIAOYANG MA
  • JIA CHEN
  • BEI XU
  • XIAO LONG
  • HAN QIN
  • ROBERT CHUNHUA ZHAO
  • XIAOJUN WANG
چکیده

A keloid scar is an overgrowth of dense fibrous tissue that develops around a wound. These scars are raised scars that spread beyong the margins of the orinigal wound to normal skin by invasion. Keloid tissue consists of both an epithelium and dermal fibroblasts. Recent studies have primarily focused on keloid fibroblasts; however, the precise role of keratinocytes in the invasion process of keloids remains to be identified. Hypoxia is a typical characteristic of keloid scars, as well as other solid tumors. The expression of the transcription factor, hypoxia-inducible factor-1α (HIF-1α), is mainly induced by hypoxia and is known for its ability to induce proliferative and transformative changes in cells; its expression has been shown to correlate with tumor invasion and metastasis. In the present study, we used immunohistochemistry, fluorescence staining and western blot analysis and demonstrated that HIF-1α was highly expressed in both the epithelial layer of keloid tissue specimens and in hypoxia-exposed keratinocytes, which suggested that the keloid keratinocytes underwent epithelial-to-mesenchymal transition (EMT) in vitro. The high expression of mesenchymal markers, such as as vimentin and fibronectin was confirmed, as well as the reduced expression of E-cadherin and zonula occludens-1 (ZO-1) during this process by detection at the protein and mRNA level. Moreover, siRNA targeting HIF-1α reversed the changes which had occurred in the morphology of the keratinocytes (cells had acquired a fibroblast-like appearance) and suppressed the invasive ability of the keratinocytes. In conclusion, the present findings demonstrate that the hypoxia/HIF-1α microenvironment provides a favorable environment for keloid-derived keratinocytes to adopt a fibroblast-like appearance through EMT. This transition may be responsible for the enhanced capacity of keloid keratinocytes to invade, allowing the keloids to extend beyond the wound margin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete collagen in a keloidlike manner.

Keloid scars represent a pathological response to cutaneous injury, reflecting a new set point between synthesis and degradation biased toward extracellular matrix (ECM) collagen accumulation. Using a serum-free two-chamber coculture model, we recently demonstrated a significant increase in normal fibroblast proliferation when cocultured with keloid-derived keratinocytes. We hypothesized that s...

متن کامل

Keloid-derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology.

Keloids are disfiguring scars that extend beyond the original wound borders and resist treatment. Keloids exhibit excessive extracellular matrix deposition, although the underlying mechanisms remain unclear. To better understand the molecular basis of keloid scarring, here we define the genomic profiles of keloid fibroblasts and keratinocytes. In both cell types, keloid-derived cells exhibit di...

متن کامل

Role of IGF system of mitogens in the induction of fibroblast proliferation by keloid-derived keratinocytes in vitro.

Keloids are proliferative dermal growths representing a pathological wound-healing response. We report high proliferation rates in normal (NF) and keloid-derived fibroblasts (KF) cocultured with keloid-derived keratinocytes (KK). IGF binding protein (IGFBP)-3 mRNA and secreted IGFBP-3 in conditioned media were increased in NF cocultured with KK compared with NF but markedly reduced in KF cocult...

متن کامل

Spontaneous Mesenchymal to Epithelial Like Tissue Transition (MET) in a Long Term Human Skin Culture

In an attempt to isolate multipotent stem cells from foreskin in a long-term culture, we encountered an interesting phenomenon which was the conversion of the fibroblast dominant condition to epithelial-like tissue formation. However, the basic mechanism(s) which may be involved in this conversion is not clear. This study was designed to evaluate the cells protein secretion activity and examine...

متن کامل

Correction: Conditioned Medium from Hypoxic Bone Marrow-Derived Mesenchymal Stem Cells Enhances Wound Healing in Mice

Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs) enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2015